1 Five key points

1. In 2016/17, there were 24,982 GP registered patients with cancer in Suffolk, which is a slight increase from 24,571 recorded in 2015/16. (3.1 Prevalence)

2. Of around 4,500 new cancer diagnoses in Suffolk in 2014, nearly 2,000 were attributed to major modifiable risk factors: around 900 were linked to smoking, 250 to unhealthy weight and 200 to a lack of fruit and vegetables. (2 Why is cancer important?)

3. The four most common types of newly diagnosed cancer account for over half of all cancers – prostate (17.5%), breast (14%), bowel (12.7%) and lung (10.3%). Prostate and breast cancer accounted for around 1 in 3 new cancers in men and women, respectively. (3.2 Incidence)

4. Males in Suffolk have a significantly higher incidence rate for most cancers compared to females. Additionally, males in Suffolk under the age of 75 have a significantly
higher mortality rate from all cancers compared to females. (3.7 Mortality)

5. Cancer detection and treatment in Suffolk is generally better than the national average. This includes: better than average cancer screening uptake and coverage; high achievement of the two week wait referrals target; low rate of cancer diagnosis via emergency presentation; a trend of decreasing mortality; and continuous improvement of survival at one year after diagnosis. (3.3 Stage of cancer at diagnosis, 3.4 Screening, 3.7 mortality, 3.5 Survival rates)

2 Why is cancer important in Suffolk?
Cancer is the name given to a collection of related diseases. In all types of cancer, some of the body’s cells begin to divide without stopping and spread into surrounding tissues. Normally, human cells grow and divide to form new cells as the body needs them. When cells grow old or become damaged, they die, and new cells take their place. When cancer develops, however, this orderly process breaks down. As cells become more and more abnormal, old or damaged cells survive when they should die, and new cells form when they are not needed. These extra cells can divide without stopping and may form growths called tumours.

Every two minutes someone in England will be told they have cancer. Half of people born since 1960 will be diagnosed with cancer in their lifetime, with that proportion continuing to rise.[1] The good news is that cancer survival is at its highest ever, with significant improvements made over the last 15 years.[2] More than half of people receiving a cancer diagnosis will now live ten years or more.[3]

Around half of diagnoses are of the most common cancers – breast, lung, prostate, and colorectal – and the other half are of rare or less common types. Across England, incidence is expected to reach over 300,000 diagnoses by 2020, and more than 360,000 by 2030.[4] The rise is due partly to the ageing and growing population, which comes as a result of the overall success of the healthcare system, meaning that people are less likely to die early from other conditions. With an ageing population, Suffolk should expect the number of residents living with cancer to continue to increase in future years.

The rise in cancer diagnoses is also in part driven by shifts in our lifestyles. An estimated four out of 10 cancers occur due to factors that are entirely modifiable and therefore preventable.[5] Not smoking, being physically active and maintaining a healthy weight reduces the risks of getting cancer. Vaccination against the human papilloma virus (HPV) and participation in cancer screening programmes further reduce the risk of specific cancers and increase the chances of earlier detection. Of all new cancer diagnoses in Suffolk in 2014, nearly 2,000 were attributed to major risk factors: around 900 were linked to smoking, 250 to unhealthy weight and 200 to a lack of fruit and vegetables (Figure 1).
Cancer is the biggest cause of death from illness or disease in every age group, from the very youngest children through to old age, with mortality significantly higher in men than in women. Death rates in England have fallen by more than a fifth over the last 30 years and by 10 per cent over the last decade. They are expected to continue to fall, with a drop of around 17% by 2030. But 130,000 people still die from cancer each year – a number that has remained relatively constant as incidence has increased.

Health inequalities across England mean there is potentially avoidable variation in survival outcomes. There would be around 15,300 fewer cases and 19,200 fewer deaths per year across all cancers combined if socio-economically deprived groups had the same incidence rates as the least deprived. More than half of the inequity in overall life expectancy between social classes is linked to higher smoking rates among poorer people.

The impact of cancer often does not end when treatment does. The consequences of cancer and its treatment include chronic fatigue, sexual difficulties, mental health problems, and pain. Six months after the end of cancer treatment around 50% of people will have one or more unmet health need. Having cancer can also impact on other aspects of people lives; including their social life and family relationships.

3 What is the local picture?

Note that Suffolk is covered by three Clinical Commissioning Groups (CCGs) and one of them spans Suffolk and Norfolk (Great Yarmouth and Waveney CCG). Figures are presented at CCG level because the data cannot be disaggregated into Great Yarmouth and Waveney.
3.1 Prevalence
Within the three CCG areas that cover Suffolk, there were 24,982 GP registered patients with cancer in 2016/17, which is a slight increase from 24,571 recorded in 2015/16. Prevalence of cancer was higher than the national average in all CCGs across Suffolk (2.8% in East of England, 3.0% in Ipswich & East CCG, 3.0% in Great Yarmouth and Waveney CCG, 3.3% in West Suffolk CCG). However, this is a crude rate which does not take account of the older populations that live in Suffolk.

3.2 Incidence
Cancer incidence is the number of new diagnoses of a condition in a specified time period. In 2015, there were 4,691 new cases of cancer in Suffolk, which represented a 30% increase on the number of cancers registered a decade earlier in 2005 (3,610). Some of this increase can be explained by an increase in the number of older people living in the County, increased awareness among patients and effective screening programmes. Between 2005 and 2015 there was an increase in the age-standardised rate (ASR) for cancer incidence from 545 to 589 diagnoses per 100,000 population. This indicates that even after accounting for the older age distribution in Suffolk, the number of new diagnoses of cancer rose by 8.1% in a decade (compared to 6.5% nationally). It should be noted that diagnosis rates can be influenced by local take up of screening programmes, which are higher than average in Suffolk.

Prostate cancer was the most common new cancer diagnosed in 2015, accounting for more than one in six (17.5%) new diagnoses in Suffolk (compared to 13.4% in England). Incidence of the four most common types of cancer accounted for over half of all cancers – prostate (17.5%), breast (14.0%), bowel (12.7%) and lung (10.3%). As the most common new cancers for the respective genders, prostate and breast cancer accounted for around one in three new cancers in men and women. The standardised prostate cancer diagnosis rate was higher in Suffolk than England. Conversely, the standardised lung cancer diagnosis rate was lower in Suffolk compared to England.

3.3 Stage of cancer at diagnosis
Cancer staging is a classification system used to categorise how far a cancer has progressed. This provides information to tailor treatment plans and estimate prognosis. In general, stages one and two indicate a less developed cancer, with better prognosis and a higher successful treatment rate. Stages three and four indicate more advanced cancers, which generally have poorer outcomes for the patient.

Early diagnosis of cancer increases the likelihood of successful treatment. Screening is used as a method of identifying disease in people who have not yet experienced symptoms that result in them seeking medical advice. In general, cancers identified during an emergency presentation at hospital are more developed and have a worse prognosis. Cancer diagnosis through emergency admission to hospital is more likely in more deprived areas. Both screening awareness and symptom awareness should be raised in these areas.

Suffolk CCGs have higher proportions of stage one and two cancer diagnoses compared to England. This means that many cancers are detected early resulting in the potential for better treatment and improved survival outcomes. West Suffolk CCG has significantly higher stage one diagnosis for all cancers compared to England. Note that the completeness of staging data varies among different localities, which affects the observed proportion of early stage cancers. Because Suffolk CCGs have better completeness of staging data, they appear to
have a higher proportion of both stage 1 and 2 diagnoses and stage 3 or 4 diagnoses when compared to England.

3.4 Screening
Currently there are three national cancer screening programmes (bowel, breast and cervical) which play a significant role in helping to detect cancer earlier. For cancers diagnosed between 2006 and 2013 in England, screen detected cancers accounted for 5% of all cancer cases. In that time, nearly 30% of female breast cancers in England were detected through screening (60% of which were classified as in situ, meaning an early stage cancer in which the growth or tumour is confined to the site from which it started). Nationally, screening accounted for 23% of cervical cancers (16% in situ) and 7% of bowel cancers.[12]

Compared to England, Suffolk performs well on all three cancer screening programmes across all CCGs. Despite this strong performance, the recent trend shows that screening coverage is decreasing across the County.

Analysis by Public Health Suffolk shows a negative correlation between screening take up and both level of deprivation and estimated proportion of non-white ethnic groups in the GP practice population.[6]

3.5 Survival rates
Cancer survival rates have doubled in the last 40 years in the UK and continue to improve. Half of people diagnosed with cancer now survive the disease for over 10 years. Possible explanations for these improvements include cancer biology, the use of diagnostic tests and screening, stage at diagnosis, access to high quality care, evolving treatments and data collection practices.[13] Suffolk is no exception to this and cancer survival across Suffolk’s CCGs show a continuous improvement.

One-year survival measures the proportion of people still alive one year after receiving a cancer diagnosis. When considering all types of cancer, around 7 in 10 (70%) people survive for one-year after receiving their diagnosis. The following information is taken from Cancer in Suffolk.[6] Of all cancers diagnosed in 2014, 68.2% of people survived 1-year in Ipswich and East Suffolk CCG, 69.0% in Great Yarmouth and Waveney CCG and 71.8% in West Suffolk CCG. This compared to 70.4% of people surviving 1-year in England. However, cancer survival rates vary depending on the type of cancer. Among breast cancer sufferers, around 19 in 20 (95%) live for more than one year. Of all cancers diagnosed in 2014, 97.3% of people survived 1-year in Ipswich and East Suffolk CCG, 95.0% in Great Yarmouth and Waveney CCG and 95.6% in West Suffolk CCG. This compared to 96.5% of people surviving 1-year in England. One-year survival for lung cancer is lower, with closer to 4 in 10 (40%) people surviving for at least twelve months. Of all lung cancers diagnosed in 2014, 30.5% of people survived 1-year in Ipswich and East Suffolk CCG, 37.7% in Great Yarmouth and Waveney CCG and 40.3% in West Suffolk CCG. This compared to 36.8% of people surviving 1-year in England.

More detailed information about cancer survival rates, broken down by cancer type and Clinical Commissioning Group, can be found in Cancer in Suffolk.[6]
3.6 Hospital admissions
An elective admission is an admission "that has been arranged in advance (not an emergency admission, a maternity admission, or a transfer)". An emergency admission is one that “is unpredictable and at short notice because of clinical need.”[18]

In 2017/18, the age-sex standardised elective hospital admission rate for all cancers was significantly lower in Great Yarmouth and Waveney CCG and West Suffolk CCG compared with East of England. Ipswich and East Suffolk CCG stands out as having a significantly higher standardised elective hospital admission rate for all cancers compared with East of England (Table 1). The age-sex standardised emergency hospital admission rate for all cancers was significantly higher in all Suffolk CCGs compared with East of England.

Possible reasons for these higher admission rates could include geographical variations in the way that reasons for admission are recorded and coded, or geographical variations in treatment pathways.

Table 1: Elective and emergency age-sex standardised hospital admission rates per 100,000 registered patients/residents for primary diagnosis of cancer by admission type, CCGs, East of England, England, 2017/18 [14]

<table>
<thead>
<tr>
<th>Geographical area</th>
<th>Elective hospital admission rate per 100,000 registered patients/residents</th>
<th>Emergency hospital admission rate per 100,000 registered patients/residents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate Compared to East of England</td>
<td>Rate Compared to East of England</td>
</tr>
<tr>
<td>Ipswich and East Suffolk CCG</td>
<td>4,082</td>
<td>278.9</td>
</tr>
<tr>
<td>Great Yarmouth and Waveney CCG</td>
<td>2,227</td>
<td>275.9</td>
</tr>
<tr>
<td>West Suffolk CCG</td>
<td>2,395</td>
<td>260.3</td>
</tr>
<tr>
<td>East of England</td>
<td>3,291</td>
<td>235.4</td>
</tr>
<tr>
<td>England</td>
<td>2,853</td>
<td>242.7</td>
</tr>
</tbody>
</table>

Notes: CCG admission rates calculated per 100,000 registered patients; East of England and England admission rates calculated per 100,000 residents; RAG calculated using 95% confidence interval.

3.7 Mortality
Despite increasing incidence rates for all types of cancer in Suffolk, mortality rates continue to decrease. This indicates that more people in Suffolk are living with and beyond cancer.

In 2017/18, the age-sex standardised mortality rates from cancer in West Suffolk CCG and Ipswich and East Suffolk CCG were lower than East of England, whereas in Great Yarmouth and Waveney CCG the rate was comparable (Table 2).
Table 2: Age-sex standardised mortality rate per 100,000 registered patients/residents from cancer, CCGs, East of England, England, 2017/18\(^{[14]}\)

<table>
<thead>
<tr>
<th>Geographical area</th>
<th>Mortality rate per 100,000 registered patients/residents</th>
<th>Compared to East of England</th>
<th>Number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipswich and East Suffolk CCG</td>
<td>247.2</td>
<td>Green</td>
<td>1,081</td>
</tr>
<tr>
<td>Great Yarmouth and Waveney CCG</td>
<td>271.5</td>
<td>Yellow</td>
<td>770</td>
</tr>
<tr>
<td>West Suffolk CCG</td>
<td>244.4</td>
<td>Green</td>
<td>669</td>
</tr>
<tr>
<td>East of England</td>
<td>269.1</td>
<td>Green</td>
<td>15,853</td>
</tr>
<tr>
<td>England</td>
<td>277.6</td>
<td>Red</td>
<td>136,896</td>
</tr>
</tbody>
</table>

Notes: CCG mortality rates calculated per 100,000 registered patients; East of England and England mortality rates calculated per 100,000 residents; RAG calculated using 95% confidence interval.

Cancer in Suffolk\(^{[6]}\) gives a more detailed breakdown of cancer mortality based on data from 2013-15, when there were 6,197 deaths caused by cancer in Suffolk.\(^{[6]}\) Mortality rates from all cancers were significantly lower in Suffolk than England; this was true for all ages and those aged under 75. Most notably, lung cancer mortality in Suffolk for people of all ages and people aged under 75 was significantly lower than the average for England, as was prostate cancer mortality in people aged under 75. Mortality rates for other cancers were comparable to the average for England.\(^{[6]}\)

The report found variation in mortality rates within the County, with Ipswich having higher rates of mortality from all cancers than other districts/boroughs. In particular, Ipswich had higher rates of lung cancer mortality among people of all ages and breast cancer mortality among people aged under 75. Among people aged under 75, males had significantly higher cancer mortality rates than females in Suffolk.\(^{[6]}\)

4 What policies affect cancer?

In July 2015 Achieving World-Class Cancer Outcomes: A Strategy for England 2015-2020 was published.\(^{[7]}\) The report recommends a fundamental shift in how we think about cancer services, with a much greater emphasis on earlier diagnosis and living with and beyond cancer. This has been followed with annual progress reports, most recently for the year 2016-17.\(^{[15]}\) The report details the progress made during the second year of the five year programme to implement the cancer strategy.

Local delivery of Achieving World-Class Cancer Outcomes is organised through established cancer alliances. These alliances support Sustainability and Transformation Partnerships (STPs) and bring together clinical, local authority, voluntary, patient and other local leaders to transform cancer pathways and improve the quality and value of cancer services locally. All three CCGs covering Suffolk fall within the East of England Cancer Alliance.\(^{[16]}\) Ipswich & East and West Suffolk CCGs are in the Suffolk and North East Essex STP. Great Yarmouth and Waveney CCG, however, is within Norfolk and Waveney STP.

There is a wealth of NICE guidance available on preventing, treating and managing cancer. There are many publications relating to cancer, including but not limited to NICE guidelines, quality standards and public health guidelines.
The time is now: A prevention strategy for Suffolk to reduce demand in the health and care sector by improving health 2016-2021 outlines the primary prevention priorities and activities within Suffolk. It includes the following programmes of work which have been directly linked with the prevention of cancer:

- smoking reduction
- increase the proportion of the population who are a healthy weight
- increase the proportion of those physically active in the population

The Suffolk Joint Health and Wellbeing Strategy now includes earlier diagnosis of cancer as a specific area of focus.

5 Further information

For a more detailed study of this disease, see the Suffolk Public Health’s 2018 Cancer in Suffolk profile: www.healthysuffolk.org.uk/uploads/Cancer_Profile_FINAL_080618.pdf

The National Cancer Registration and Analysis Service (NCRAS), formerly the National Cancer Intelligence Network (NCIN), aims to collect data on all cases of cancer that occur in people living in England. The data is used to support public health, healthcare and research. NCRAS operates a number of analytical partnerships, focusing on specific areas such as early diagnosis work with Cancer Research UK, survivorship with Macmillan, and local intelligence with the Transforming Cancer Services for London Team. www.ncin.org.uk/home

The cancer dashboard, coproduced by NHS England and Public Health England, is intended as a tool to help clinical leaders, commissioners and providers to quickly and easily identify priority areas for improvement in their cancer services. This can be done by comparing performance against other similar organisations or the England average and tracking progress over time where data are available. The dashboard also enables easy tracking of progress towards the national at both a national and a local level, and allows local health economies to see how they are contributing to these key priority areas. www.cancerdata.nhs.uk/dashboard

NICE produce a comprehensive range of guidance about cancers: www.nice.org.uk/guidance/conditions-and-diseases/cancer

There are a number of charities dedicated to research about cancer. Among these charities, Cancer Research UK produce data and statistics about cancer in the UK: www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk

6 References

[12] National Cancer Intelligence Network, “Routes to Diagnosis.”

